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I introduce a simple continuous probability theory based on the Ginzburg-Landau equation that
provides a common analytical basis to relate and describe the main features of two seemingly different
phenomena of condensed-matter physics, namely self-organized criticality and multifractality.
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The concept of self-organized criticality (SOC) [1] has
attracted great interest recently, both analytically [2, 3]
and experimentally [4, 5]. The idea behind SOC is that
a certain class of dynamical many-body systems drive
themselves into a statistically stationary critical state,
with no intrinsic length or time scale, where they exhibit
fractal behavior and generate 1/f noise. Besides SOC,
the generalization of fractal growth to self-similar mul-
tifractals has also attracted considerable attention over
the past years [6, 7]. Theoretical models to describe mul-
tifractality (MF) have been concerned with mean-field
arguments [8] and standard renormalization-group meth-
ods [9].

Motivated by the suggestion that SOC supports the
appearance of fractal structures [1], it is natural to ask
then if there is a common principle underlying the seem-
ingly unrelated phenomena of SOC and MF. As far as I
know a fixed scale transformation method [10], developed
for fractal growth, has been used to investigate analyti-
cally the nature of two-dimensional (2D) clusters in SOC.
Henceforth, it is also tempting to search for a unifying
scenario that underpins a plausible link between MF and
SOC. In fact this is the motivation for this work in which
I only take a step in that direction.

In this Rapid Communication I propose a simple
continuous probability theory based on the Ginzburg-
Landau (GL) equation [11] that combines together the
concepts of SOC and MF. In this goal I explore an an-
alytical basis which allows one to unravel the genesis of
power-law correlations in space from the point of view
of a nonlinear singularity spectrum equivalent to mul-
tifractals and to obtain further insight into the physics
governing this crossover.

A crucial feature of the present formalism is to con-
sider that all random wvariables in a 1D space, R!, are
functions of the coordinate variable x which I map into
an equivalent independent variable {(—say (energy)/(unit
force)—characterizing a random system. Then, all prob-
abilities may became expressible in terms of the uniform
probability distribution function

¢2
G(62) - 6(¢1) = P{et < ¢ < G} /{ O d ., ()

where { } indicates the function interval and ¢ is a uni-
form probability density on the line (or R!) which needs
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to be specified. Within this continuous probability model
I assume ¢(¢) = £{1 + pH(C)}, such that ¢(¢ —
+00)/¢o — 0 and ¢(¢ — —o0)/po — 1. I postulate H(()
to be given by the real solutions of the static, dimen-
sionless GL-like equation: 82H(¢*)/8(¢*)? + pH(¢*) —
gH3((*) = 0, (*eD, where ¢* = ¢/Co, [p,q] > 0 and
o is a coefficient of dim[length]. If the 1D domain D is
infinite, then the GL posseses the stable, kink solution:

H(¢*) = :l:\/g tanh(¢*1/%). Using this result it is possi-

ble to establish a relation for the probability distribution
P as follows.

The integral of Eq. (1) over the limits: {3 = A\ (o >
¢+ X260 =(1, is

G(M&o) — G(¢ + A2Co)

8 [ e (@)
=5 /<+A2(o 1+ u tanh e d¢’' = -7(¢)

which defines the function 7(¢). Therein I set p = g = 2
to reduce the free parameters. These integration limits
lead to the condition

A=A +¢*<0 . (3)

()

The sign in Eq. (2) implies that the G functions sat-
isfy G(¢ + A2¢o) > G(A1{p) for ¢ # 0, which throughout
the theory are undefined, whereas A; (i=1,2) restrict the
range of ¢*.

Suppose Ay # A;, then the above integral gives

Y A ¢*
T(¢*) = <1+/\2_)\

gl _< Incosh A; + Incosh(Ay +¢*) ) ,
A2 - /\1

(4)

in which ¢5 = (o¢o/2 and 7(0) = G(A260) — g/\lCo) =
(A2 —A1)@5{1 FpI'r}, such that Ty = w_
When ¢* = 0, MF will be described assuming Q(Ag(o) <
G(A1¢o), whereas for SOC: G(A2¢0) > G(A1o)-

To analyze the possible multifractal features of P I
define: 7(¢*) = {A2 — A1 + (*}D¢-. Then it follows that

) ) {7(0) F p¢g Incosh A2}
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_ 1 « 2 ¢ «
D¢ = X;——M{T(O) F pgg Incosh A} + Py vare ()\2 W In cosh A; + Incosh(Ag + ¢*) , (5)

such that A2 — A1 + ¢{* # 0. From this relation I obtain

Dgeo = 528, and D+ too = Dgeso £ ug{1+Ta};

D¢vy—oo = Deeyo F uopy{1 —'x}. However, if Ag — A1 +

(* = 0 then DC‘_*('X_{_ZITT) = D(‘-—»O i/“'¢3{1—‘)\ + tanh )\1}
Complementary to 7 I also define

a(C*) = a—i;r(c*) = D¢ o pg{Tr +tanh(Ag +¢*)}

(6)

Therefore, it can be easily shown that amax = a((* —

—00) = D¢vs_c0y a0d Omin = 0(¢* — +00) = D¢vry oo

To relate these equations to MF and SOC, I impose

a condition for @ and D. If ¢* — 400, then D¢syoo

and a(¢*) are allowed to take the values 0 or 2D;«_,0,

depending on the phenomena. The case a({* — +00) =~

0 and D¢« _, 4o =~ 0 will be in correspondence with MF.
To achieve this I approximate

* EDC“—)O

where the integer factor ¢ = +1 distinguishes such two
cases.

According to definitions used in MF [12], I also con-
sider f(@) = ¢*a(¢*)—7(¢*), and Cer = — 5&aypT(C*) =
Fugy sech’(Az + ¢*). When f(c) and D¢~ are smooth
functions of @ and ¢*, then f(a) can be related to 7(¢*)
by a Legendre transformation [12], which reflects a con-
nection with thermodynamics. After this physical mean-
ing and assuming ¢g > 0 as discussed below, I realize that
¢ — F 1 since the analogous “specific heat” is C¢» > 0.
This, in turn, implies that the reduced order parameter
#(¢) in Eq. (1) can take the desired values 0 and 1 when
¢* — 400 and (* — —o0, respectively.

Besides this, the choice of 4 = F 1 implies that I may
also obtain Eq. (7) from D¢«_,o and 7(0), provided £ —
+1. However, if ¢ — —1, then Eq. (7) is recovered by
changing the sign of 7(0). This will became clear later on.
The present theory is thus dependent on A; (i=1,2) and
(the sign and magnitude of) 7(0), such that ¢ satisfies the
condition in Eq.(3) and ¢§ is positive, satisfying Eq.(7).

(1) The case A1 > Ay such that Ay > 0. Figure 1(a)
displays the dependence of 7 on (* for different values
of A; and Az, such that 7(0) = —1 and € = 1. Not-
ing that A; — A2 = 1 in all curves illustrated, so as to
have D¢s_,o = 1, then from Eq. (3) { < 1. Hitherto,
the present GL-based approch allows ¢* to take on nega-
tive and positive values < 1. However, in following plots
concerning MF, the range of (* is extended up to 3 for
illustrative purposes. From Fig. 1(a) it can be seen that,
on increasing the value of A1, there is a more rapid con-
vergence of T for positive ¢* than for {* < 0; displaying
thus typical features of MF [12]. Such a nontrivial behav-
ior of 7 illustrates the data collapse or breakdown of MF
at ¢* > 0 where 7(¢{*) > 0. This is in accordance with
the MF structure of the function D¢+ shown in Fig. 2,

which corresponds to a spectrum of fractal dimensions. I
point out that D¢. of Eq. (5) is not constant for positive
or negative ¢* so that it relates to a multifractal dimen-
sion. Hence, 7 becomes also a nonlinear function of {*.
In fact this approach yields, e.g., for the full line in Fig.
1(a) the values D¢+_,; = 0.421 and D¢v— oo = 3.53.

In Fig. 3(a) I display « as a function of ¢* for the same
A1 and Az as in Fig. 1(a). When A; =1 and A2 = 0 this
function exhibits sharp variations around ¢* = 0 with
a maximum value that shows a stronger dependence on
A1 for positive ¢* than for ¢(* < 0. This rules out the
possibility that the actual position for a critical value of
¢, at which the multifractal formalism actually breaks
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FIG. 1. (a) Analogous “free energy” 7 vs ¢* for MF using
(full line) A1 =1, A2 = 0; (————) A1 = 1.5, A2=0.5; (--- - - )
A1 = 2, A2 = 1. (b) Normalized probability distribution
function 7 vs {* for SOC using (full line) A; = 3, A2 = —6;
(————)/\1=3,/\2=-—7;( ------ )/\1:3,)\2=—-8. (C)
Present description of the probability n(> s) for the SOC
signal in a model of erosion [14].
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FIG. 2. Multifractal dimension D¢« vs {* using A1 and A2 FIG. 4. Analogous “specific heat” C¢+ vs " using A1 and

as in 1(a).

down, is obtained at ¢} = 0. For other values of A; and
A2, ¢ changes towards negative values. For ¢* < (¥,
7(¢*) is dominated by o which, in turn, varies with the
magnitude of As.

Characteristic features of a phase transition at {} can
be figured out by examining C¢«, which is illustrated in
Fig. 4. There is a sharp peak around the value ¥ = 0
for the case corresponding to the full line in Fig. 1(a).
The heights and positions of these curves are strongly
dependent on A\; > Az. Nicely, this finding is also similar
to reported MF results [12]. The behavior of f against
a for several values of A; and Az can be seen in Fig.
5(a). I find that, on increasing the magnitude of A;, the
left-hand sides of these plots converge more rapidly than
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FIG. 3. (a) Analogous “internal energy” « vs * using A1
and Az as in 1(a). (b) The function a of Eq.(6) vs ¢* using
A1 and Az as in 1(b).

A2 as in 1(a).

the right-hand sides which converge poorly. This is in
complete agreement with the MF signal observed in the
context of self-similar random resistor networks (open
and full circles in Fig. 5(a) [13]) or, e.g., in diffusion-
limited aggregation when ); is related to the system size
[7]. Given its interpretation of a multifractal character
for fractal subsets, each with a different fractal dimension
having singularity strength o, then f(a) > 0.

All of these predictions resemble qualitatively the in-
triguing results observed in MF. In the present examples
the maximum and minimum values of a can easily be es-
timated. This allows for the existence of a critical point
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FIG. 5. (a) Analogous “entropy” f vs analogous “internal
energy” « using A; and Az as in 1(a). Open and full circles are
MF signals for self-similar random resistor networks [13]. (b)
The nonlinear f(a) singularity spectrum proposed to charac-
terize SOC using A1 and Az as in 1(b).
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¢* above which the infinite hierarchy of phases can be
found, but below which a single phase appears charac-
terized by amax-

(2) The case A1 > A2 such that A2 < 0: In Fig. 1(b)
the dependence of 7 on (* is plotted for different val-
ues of A; and A, such that, as a difference with MF,
7(0) = 1 and € = —1. This choice allows us to nor-
malize 7(¢*) and to mimic the main features of SOC,
namely a power-law behavior, provided ¢* is associated
with the logarithmic function of some measured random
event, say, s. As an illustrative example, in Fig. 1(c) I
show a reasonable description of the probability = (> s)
of the SOC signal calculated within a model of erosion
[14]. This demonstrates that the present theory does ap-
ply to self-organizing systems. For a class of continuous,
cellular automaton models of earthquakes [15], 7 can be
reinterpreted as being the number of events with reduced
released energy E ~ e¢”.

The theoretical curves in Fig. 1(b) refer to different
values of A\; and A;. Using Eq. (3), the GL-based theory
is valid for ¢ < 9 — 11, where I deal with 0 < 7(¢*) < 1.
A given slope of the linear behavior of the curves in this
figure is determined by fixing A\; > 0. In particular, this
parameter may be associated with the elastic parameter
of the spring-block model for earthquakes [15]. The cutoff
in the ¢* axis may be related to the system size of cellular
automaton modeling.

To see more clearly power-law features in the behavior
of 7 over a wide range of ¢* > 0 I investigate next the
derivative of 7(¢*), defined through a of Eq. (6), which
is plotted in Fig. 3(b). The behavior of a(¢*) indicates
that for the smallest positive ¢*, it converges to a con-
stant negative value thus revealing the constant nature of
the negative slopes in the (7 —¢*) curves of Fig. 1(b). On
increasing ¢* each curve smoothly approaches a smaller
value. Clearly, due to the probabilistic definition of 7
such convergences of a need not to be considered and,
hence, the relations between amax,min and D¢« o0 be-
come meaningless for SOC.

After establishing this resemblance of a power-law de-
scription for 7, I continue applying anew the MF for-
malism to analyze SOC. In view of the features in a((*)
of Fig. 3(b), the second derivative of 7, i.e., C¢s (not
shown), presents a sharp peak around the inflection point
of the function a(¢*), say (s. As a difference to MF (c.f.

Fig. 4), these peak heights reduce their magnitude on de-
creasing A2 < A; and shift their position towards positive
values of ¢*. No phase transition as in the case of MF
is expected because 7 > 0 restricts the range of valid
¢* < (he- Moreover, D¢« for SOC (also not shown) is
not constant on increasing ¢* as in MF.

The singularity spectrum f(«) plays an alternative role
when dealing with SOC as can be assessed from Fig. 5(b).
In this plot f(a) exhibits a nonlinear behavior different
from the parabolic shape of Fig. 5(a). In MF f(«) takes
its maximum at a(¢* = 0) whereas in SOC this spectrum
becames a monotonically increasing (negative) function
of (negative) a. On decreasing the magnitude of Ay the
SOC curves converge to —1 and separate out as a function
of decreasing o within the range of validity of « in Fig.
3(b). Since 7({*) is positive, then —2 < f(a) < —1.
I suggest this new aspect of f(c) to be a fundamental
property for the additional characterization of SOC. It is,
therefore, most likely that the linear behavior displayed
by 7(¢*) [Fig. 1(b)], that is quantified via a(¢*) [Fig.
3(b)], finds its root through the behavior of f(a) [Fig.
5(b)].

In conclusion, I have been able to shed light on a uni-
fying formalism leading to both phenomena of MF and
SOC using a continuous density probability ¢(¢). This
function has been related to H({), which I postulated
to be given by the real kink solutions of a dimensionless
GL-like equation. Of course to use a continuous proba-
bility theory may be seen as being heuristic, especially
so if simulations are done using discretized cell configu-
rations. But, as I discussed, a great deal of relevant in-
formation can be extracted from a continuous approach
which, essentially, does relay on the sign of Az, 7(0), and
€ only. While the present (static) GL-based theory is ex-
tremely simple, it gives information about the complex
origin of self-organized critical phenomena whose physics
has been shown—to a good approximation—to be anal-
ogous to that required to describe MF. This theory also
reflects the minimal ingredients that can give rise to an
intrinsically critical state. Lastly, I recently learned that
MF also emerges from GL equations with random initial
conditions for its temporal evolution [11].

I owe thanks to V.L. Nguyen, G.C. Barker, W. Wang
and H. Rosu for helpful remarks.
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